Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2003;120(4):951-60.

Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury.

Author information

  • 1Department of Neuroscience, Karolinska Institutet, Retzius väg 8, B2,IV, S-171 77, Stockholm, Sweden. johan.widenfalk@neuro.ki.se

Abstract

Spinal cord injury leads to acute local ischemia, which may contribute to secondary degeneration. Hypoxia stimulates angiogenesis through a cascade of events, involving angiogenesis stimulatory substances, such as vascular endothelial growth factor (VEGF). To test the importance of angiogenesis for functional outcome and wound healing in spinal cord injury VEGF165 (proangiogenic), Ringer's (control) or angiostatin (antiangiogenic) were delivered locally immediately after a contusion injury produced using the NYU impactor and a 25 mm weight-drop. Rats treated with VEGF showed significantly improved behavior up to 6 weeks after injury compared with control animals, while angiostatin treatment lead to no statistically significant changes in behavior outcome. Furthermore, VEGF-treated animals had an increased amount of spared tissue in the lesion center and a higher blood vessel density in parts of the wound area compared with controls. These effects were unlikely to be due to increased cell proliferation as determined by bromo-deoxy-uridine-labeling. Moreover, VEGF treatment led to decreased levels of apoptosis, as revealed by TUNEL assays. In situ hybridization demonstrated presence of mRNA for VEGF receptors Flt-1, fetal liver kinase-1, neuropilin-1 and -2 in several important cellular compartments of the spinal cord. The different experiments indicate that beneficial effects seen by acute VEGF delivery was attributable to protection/repair of blood vessels, decreased apoptosis and possibly also by other additional effects on glial cells or certain neuron populations.

PMID:
12927201
[PubMed - indexed for MEDLINE]

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk