Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2003 Sep;185(17):5133-47.

Mutational loss of a K+ and NH4+ transporter affects the growth and endospore formation of alkaliphilic Bacillus pseudofirmus OF4.

Author information

  • 1Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA.


A putative transport protein (Orf9) of alkaliphilic Bacillus pseudofirmus OF4 belongs to a transporter family (CPA-2) of diverse K+ efflux proteins and cation antiporters. Orf9 greatly increased the concentration of K+ required for growth of a K+ uptake mutant of Escherichia coli. The cytoplasmic K+ content of the cells was reduced, consistent with an efflux mechanism. Orf9-dependent translocation of K+ in E. coli is apparently bidirectional, since ammonium-sensitive uptake of K+ could be shown in K+ -depleted cells. The upstream gene product Orf8 has sequence similarity to a subdomain of KTN proteins that are associated with potassium-translocating channels and transporters; Orf8 modulated the transport capacities of Orf9. No Orf9-dependent K+(Na+)/H+ antiport activity was found in membrane vesicles. Nonpolar deletion mutants in the orf9 locus of the alkaliphile chromosome exhibited no K+ -related phenotype but showed profound phenotypes in medium containing high levels of amine-nitrogen. Their patterns of growth and ammonium content suggested a physiological role for the orf9 locus in bidirectional ammonium transport. Orf9-dependent ammonium uptake was observed in right-side-out membrane vesicles of the alkaliphile wild type and the mutant with an orf8 deletion. Uptake was proton motive force dependent and was inhibited by K+. Orf9 is proposed to be designated AmhT (ammonium homeostasis). Ammonium homeostasis is important in high-amine-nitrogen settings and is particularly crucial at high pH since cytosolic ammonium accumulation interferes with cytoplasmic pH regulation. Endospore formation in amino-acid-rich medium was significantly defective and germination was modestly defective in the orf9 and orf7-orf10 deletion mutants.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk