Format

Send to:

Choose Destination
See comment in PubMed Commons below

Stand-off Raman spectroscopic detection of minerals on planetary surfaces.

Author information

  • 1Hawaii Institute of Geophysics and Planetology, University of Hawaii, 2525 Correa Rd., HIG, Honolulu, HI 96822, USA. sksharma@mano.soest.hawaii.edu

Abstract

We have designed and developed two breadboard versions of stand-off Raman spectroscopic systems for landers based on a 5-in. Maksutov-Cassegrain telescope and a small (4-in. diameter) Newtonian telescope receiver. These systems are capable of measuring the Raman spectra of minerals located at a distance of 4.5-66 m from the telescope. Both continuous wave (CW) Ar-ion and frequency doubled Nd:YAG (532 nm) pulsed (20 Hz) lasers are used as excitation sources for measuring remote Raman spectra of rocks and minerals. We have also made complementary measurements on the same rock samples with a micro-Raman system in 180 and 135 degrees geometry for evaluating the system performance and for estimating effect of grain size and laser-induced heating on the spectra of minerals using alpha-quartz as a model mineral. A field portable remote pulsed Raman spectroscopic system based on the 5-in. telescope and an f/2.2 spectrograph has been developed and tested. We have also demonstrated a prototype of a combined Raman and laser-induced breakdown spectroscopy (LIBS) system, capable of providing major element composition and mineralogical information on both biogenic and inorganic minerals at a distance of 10 m from the receiver.

PMID:
12909150
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk