Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2003 Nov;285(5):H2240-7. Epub 2003 Jul 24.

Electroporation-mediated delivery of catalytic oligodeoxynucleotides for manipulation of vascular gene expression.

Author information

  • 1Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Tarry 14-707, Chicago, IL 60611, USA.

Abstract

The development of inexpensive and effective approaches to transiently decrease gene expression in vivo would be useful for the study of physiological processes in living animals. DNAzymes are a novel class of DNA oligonucleotides that can catalytically cleave target mRNAs and thereby reduce protein production. However, current methods for their delivery in vivo are limited and inefficient. In this study, we show that electroporation can be used to deliver DNAzymes to the intact mesenteric vasculature of rats. With the use of PKC-epsilon as a target, a set of wild-type and mutant control DNAzymes was designed and shown to reduce both PKC-epsilon mRNA and protein levels in cultured smooth muscle cells in a specific manner. The wild-type DNAzyme reduced PKC-epsilon protein levels by 70% at 24 h in two different cell lines without decreasing the levels of the five other PKC isoforms tested. When delivered to the intact vasculature using electroporation, the DNAzyme reduced PKC-epsilon protein levels by >60% without affecting these other PKC isoforms. Electroporation was required for oligonucleotide transfer and was able to deliver the DNAzymes to multiple cell layers in the vessel wall. Protein levels were reduced maximally by 24 h postelectroporation and returned to normal by 48 h. These results suggest that electroporation can be used to deliver DNAzymes and other DNA oligonucleotides to the vasculature in vivo and can decrease gene expression for a window of time that can be used for experimental studies.

PMID:
12881213
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk