Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9452-7. Epub 2003 Jul 23.

Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis.

Author information

  • 1Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA.

Abstract

Effector T cell responses can be modulated by competing positive or negative signals transduced by natural killer (NK) cell receptors. This raises the possibility that dominant T cell stimulation might promote autoimmune reactions. In rheumatoid arthritis (RA), the severity of autoimmune and inflammatory joint disease correlates with large numbers of CD4+CD28- T cells, which are scarce in healthy individuals. For poorly defined reasons, these T cells are autoreactive, implying that they may contribute to disease manifestations. CD4+CD28- T cells in peripheral blood and synovial tissue of RA patients were found to express NKG2D, a costimulatory receptor that is absent on normal CD4 T cells. NKG2D was induced by tumor necrosis factor alpha and IL-15, which are abundant in inflamed synovia and RA patient sera. RA synoviocytes aberrantly expressed the stress-inducible MIC ligands of NKG2D, which stimulated autologous CD4+CD28- T cell cytokine and proliferative responses. Peripheral blood serum samples of RA patients contained substantial amounts of synoviocyte-derived soluble MICA, which failed to induce down-modulation of NKG2D because of the opposing activity of tumor necrosis factor alpha and IL-15. These results suggest that a profound dysregulation of NKG2D and its MIC ligands may cause autoreactive T cell stimulation, thus promoting the self-perpetuating pathology in RA and possibly other autoimmune diseases.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk