Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2003 Aug 1;331(1):281-99.

Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations.

Author information

  • 1Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, J-567 Health Sciences, Box 357350, Seattle, WA 98195, USA.

Abstract

Protein-protein docking algorithms provide a means to elucidate structural details for presently unknown complexes. Here, we present and evaluate a new method to predict protein-protein complexes from the coordinates of the unbound monomer components. The method employs a low-resolution, rigid-body, Monte Carlo search followed by simultaneous optimization of backbone displacement and side-chain conformations using Monte Carlo minimization. Up to 10(5) independent simulations are carried out, and the resulting "decoys" are ranked using an energy function dominated by van der Waals interactions, an implicit solvation model, and an orientation-dependent hydrogen bonding potential. Top-ranking decoys are clustered to select the final predictions. Small-perturbation studies reveal the formation of binding funnels in 42 of 54 cases using coordinates derived from the bound complexes and in 32 of 54 cases using independently determined coordinates of one or both monomers. Experimental binding affinities correlate with the calculated score function and explain the predictive success or failure of many targets. Global searches using one or both unbound components predict at least 25% of the native residue-residue contacts in 28 of the 32 cases where binding funnels exist. The results suggest that the method may soon be useful for generating models of biologically important complexes from the structures of the isolated components, but they also highlight the challenges that must be met to achieve consistent and accurate prediction of protein-protein interactions.

PMID:
12875852
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk