Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 2003 Aug 1;171(3):1255-65.

A giant GTPase, very large inducible GTPase-1, is inducible by IFNs.

Author information

  • 1Institute for Genetics, University of Cologne, Cologne, Germany.


The complex, partially overlapping, cellular responses to IFN type I (IFN-alpha and -beta) and IFN type II (IFN-gamma) involve several hundred genes that can be largely classified in terms of specific cellular programs functional in innate and adaptive immunity. Among these programs are previously unconsidered mechanisms of cell-autonomous resistance against various pathogens mediated by dedicated, largely novel families of GTPases. We report here the identification and characterization of a new GTPase family that contributes to the cellular response to both type I and type II IFNs. We name this family the very large inducible GTPases (VLIGs). The prototype VLIG, VLIG-1, is a strongly IFN-inducible, soluble, cytosolic and nuclear protein of 280 kDa. The open reading frame of VLIG-1 is encoded on a single very large exon, and outside the canonical GTP-binding motifs, sequence and structural prediction suggest a unique family without significant relationship to other known protein families. Within the GTPase superfamily the VLIG family is more closely related to IFN-inducible GTPases mediating cell-autonomous resistance than to other GTPase families. In addition, we provide evidence that VLIG-1 is polymorphic in mice of different genetic backgrounds and is a member of a small gene family on mouse chromosome 7 with a conserved homologue located on human chromosome 11.

[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Secondary Source ID

Publication Types

MeSH Terms


Secondary Source ID

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk