Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Hum Mol Genet. 2003 Aug 1;12(15):1839-45.

Mitochondrial DNA depletion can be prevented by dGMP and dAMP supplementation in a resting culture of deoxyguanosine kinase-deficient fibroblasts.

Author information

  • 1University Department of Clinical Neurosciences, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, UK. j.taanman@rfc.ucl.ac.uk

Abstract

Deoxyguanosine kinase is a constitutively expressed, mitochondrial enzyme of the deoxyribonucleoside salvage pathway. Deficiency of deoxyguanosine kinase causes early-onset, hepatocerebral mitochondrial DNA (mtDNA) depletion syndrome. To clarify the molecular mechanism of the disease, a skin fibroblast culture was studied from a patient carrying a homozygous nonsense mutation in the gene for deoxyguanosine kinase. In situ examination of DNA synthesis demonstrated that, although mtDNA synthesis is cell cycle independent in control fibroblasts, mtDNA synthesis occurs mainly during the S-phase in deoxyguanosine kinase-deficient cells. Consistent with this observation, it was found that the mtDNA content of exponentially growing, deoxyguanosine kinase-deficient cells is only mildly affected. When cycling is inhibited by serum-deprivation and cells are in a resting state, however, the mtDNA content drops considerably in deoxyguanosine kinase-deficient cells, yet remains stable in control fibroblasts. The decline in mtDNA content in resting, deoxyguanosine kinase-deficient cells can be prevented by dGMP and dAMP supplementation, providing conclusive evidence that substrate limitation triggers mtDNA depletion in deoxyguanosine kinase-deficient cells.

PMID:
12874104
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk