Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2003 Jul 15;63(14):4021-7.

Extreme sensitivity of adult neurogenesis to low doses of X-irradiation.

Author information

  • 1Brain Tumor Research Center, Department of Neurological Surgery, University of California at San Francisco, San Francisco, California 94143, USA.

Abstract

Therapeutic irradiation of the brain is associated with a number of adverse effects, including cognitive impairment. Although the pathogenesis of radiation-induced cognitive injury is unknown, it may involve loss of neural precursor cells from the subgranular zone (SGZ) of the hippocampal dentate gyrus and alterations in new cell production (neurogenesis). Young adult male C57BL mice received whole brain irradiation, and 6-48 h later, hippocampal tissue was assessed using immunohistochemistry for detection of apoptosis and numbers of proliferating cells and immature neurons. Apoptosis peaked 12 h after irradiation, and its extent was dose dependent. Forty-eight h after irradiation, proliferating SGZ cells were reduced by 93-96%; immature neurons were decreased from 40 to 60% in a dose-dependent fashion. To determine whether acute cell sensitivity translated into long-term changes, we quantified neurogenesis 2 months after irradiation with 0, 2, 5, or 10 Gy. Multiple injections of BrdUrd were given to label proliferating cells, and 3 weeks later, confocal microscopy was used to determine the percentage of BrdUrd-labeled cells that showed mature cell phenotypes. The production of new neurons was significantly reduced by X-rays; that change was dose dependent. In contrast, there were no apparent effects on the production of new astrocytes or oligodendrocytes. Measures of activated microglia indicated that changes in neurogenesis were associated with a significant inflammatory response. Given the known effects of radiation on cognitive function and the relationship between hippocampal neurogenesis and associated memory formation, our data suggest that precursor cell radiation response and altered neurogenesis may play a contributory if not causative role in radiation-induced cognitive impairment.

PMID:
12874001
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk