Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2003 Jul 17;424(6946):321-4.

A cytoplasmic region determines single-channel conductance in 5-HT3 receptors.

Author information

  • 1Neurosciences Institute, Department of Pharmacology and Neuroscience, Ninewells Hospital and Medical School, The University of Dundee, Dundee DD1 9SY, UK.

Abstract

5-hydroxytryptamine type 3 (5-HT3) receptors are cation-selective transmitter-gated ion channels of the Cys-loop superfamily. The single-channel conductance of human recombinant 5-HT3 receptors assembled as homomers of 5-HT3A subunits, or heteromers of 5-HT3A and 5-HT3B subunits, are markedly different, being 0.4 pS (refs 6, 9) and 16 pS (ref. 7), respectively. Paradoxically, the channel-lining M2 domain of the 5-HT3A subunit would be predicted to promote cation conduction, whereas that of the 5-HT3B subunit would not. Here we describe a determinant of single-channel conductance that can explain these observations. By constructing chimaeric 5-HT3A and 5-HT3B subunits we identified a region (the 'HA-stretch') within the large cytoplasmic loop of the receptor that markedly influences channel conductance. Replacement of three arginine residues unique to the HA-stretch of the 5-HT3A subunit by their 5-HT3B subunit counterparts increased single-channel conductance 28-fold. Significantly, ultrastructural studies of the Torpedo nicotinic acetylcholine receptor indicate that the key residues might frame narrow openings that contribute to the permeation pathway. Our findings solve the conundrum of the anomalously low conductance of homomeric 5-HT3A receptors and indicate an important function for the HA-stretch in Cys-loop transmitter-gated ion channels.

PMID:
12867984
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk