Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
FEBS Lett. 2003 Jul 17;547(1-3):205-11.

SAP97 increases Kv1.5 currents through an indirect N-terminal mechanism.

Author information

  • 1Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, V6T 1Z3, Vancouver, BC, Canada.

Abstract

The functional interaction of the voltage-gated potassium channel hKv1.5 with the PDZ domain containing protein SAP97 has been investigated. In marked contrast with the known dependence of SAP97-induced Kv1 potassium current down-regulation on the channel C-termini, SAP97 increased hKv1.5 current through an indirect interaction with the Kv1.5 N-terminus. Deletion of the Kv1.5 N-terminus eliminated the SAP97-mediated increase in potassium currents whereas deletion of the channel's C-terminal PDZ binding motif had no effect. In contrast with other Kv1-SAP97 interactions, no physical interaction could be detected in vivo or in vitro between the two proteins. The proteins did not co-localize in cardiac myocytes nor did they co-immunoprecipitate from transfected HEK cells. Yeast two-hybrid experiments also failed to detect any interaction between the two proteins, but in one experiment of six, Kv1.5 co-immunoprecipitated very inefficiently with SAP97 from rat ventricular myocytes. Thus, we conclude that the influence of SAP97 on Kv1.5 potassium current levels is dependent upon a novel regulatory mechanism.

PMID:
12860415
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk