Format

Send to:

Choose Destination
See comment in PubMed Commons below
Circ Res. 2003 Jul 25;93(2):e2-8. Epub 2003 Jul 3.

Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule.

Author information

  • 1Vascular Biology Unit, Department of Surgical Research, Northwick Park Institute for Medical Research, Harrow, Middlesex HA1 3UJ, UK.

Abstract

Carbon monoxide, which is generated in mammals during the degradation of heme by the enzyme heme oxygenase, is an important signaling mediator. Transition metal carbonyls have been recently shown to function as carbon monoxide-releasing molecules (CO-RMs) and to elicit distinct pharmacological activities in biological systems. In the present study, we report that a water-soluble form of CO-RM promotes cardioprotection in vitro and in vivo. Specifically, we found that tricarbonylchloro(glycinato)ruthenium(II) (CORM-3) is stable in water at acidic pH but in physiological buffers rapidly liberates CO in solution. Cardiac cells pretreated with CORM-3 (10 to 50 micromol/L) become more resistant to the damage caused by hypoxia-reoxygenation and oxidative stress. In addition, isolated hearts reperfused in the presence of CORM-3 (10 micromol/L) after an ischemic event displayed a significant recovery in myocardial performance and a marked and significant reduction in cardiac muscle damage and infarct size. The cardioprotective effects mediated by CORM-3 in cardiac cells and isolated hearts were totally abolished by 5-hydroxydecanoic acid, an inhibitor of mitochondrial ATP-dependent potassium channels. Predictably, cardioprotection is lost when CORM-3 is replaced by an inactive form (iCORM-3) that is incapable of liberating CO. Using a model of cardiac allograft rejection in mice, we also found that treatment of recipients with CORM-3 but not iCORM-3 considerably prolonged the survival rate of transplanted hearts. These data corroborate the notion that transition metal carbonyls could be used as carriers to deliver CO and highlight the bioactivity and potential therapeutic features of CO-RMs in the mitigation of cardiac dysfunction. The full text of this article is available online at http://www.circresaha.org.

PMID:
12842916
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk