Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2003 Jul 1;63(13):3840-4.

P21Waf1/Cip1 dysfunction in neuroblastoma: a novel mechanism of attenuating G0-G1 cell cycle arrest.

Author information

  • 1Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.

Abstract

In normal cells in which DNA has been damaged, p53 induces the expression of p21(Waf1/Cip1); p21, in turn, binds to cyclin-dependent kinase 2 (cdk2) and inhibits its function. Inhibition of cdk2 results in cell cycle arrest in G(0)-G(1). Although p53 is transcriptionally active and induces p21 expression in neuroblastoma (NB) cells, the G(0)-G(1) checkpoint is attenuated. Here we report that the mechanism that mediates this defect in NB cells is the inability of p21 to bind to, or inhibit the activity of cdk2. However, when recombinant p21 protein was added to NB cell extracts in vitro, the protein inhibited the activity of cdk2. This finding suggests that endogenous p21 protein in NB cells is inactive and may be bound either to a protein complex or in a conformation that precludes its binding to cdk2. The dysfunction of p21 in NB cells represents a novel mechanism by which the G(0)-G(1) cell cycle checkpoint can be inactivated. This mechanism may be important in regulating the growth of NB and potentially other types of tumors. Cdk inhibitors currently being developed for clinical use may be useful therapy for tumors such as NB in which endogenous cdk inhibitors are defective.

PMID:
12839982
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk