Format

Send to:

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 2003 Jul 15;287(2):262-71.

Decrease in expression of alpha 5 beta 1 integrin during neuronal differentiation of cortical progenitor cells.

Author information

  • 1Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.

Abstract

Neuronal differentiation of embryonic neural progenitor cells is regulated by both intrinsic and extrinsic signals. Since dynamic changes in cell shape typify neuronal differentiation, cell adhesion molecules could be relevant to this process. Although it has been reported that fibronectin-integrin interactions are important for the proliferation of neural progenitor cells, little is known about the contribution of integrins to neuronal differentiation. In order to address this shortfall, we examined integrin expression on cortical progenitor cells by using immunohistochemistry and FACS analysis of cells in which GFP expression was driven by regulatory (promoter) regions of the nestin gene (nestin-GFP(+)). We here report that high levels of nestin promoter activity correlated with high expression levels of alpha(5)beta(1) integrin (alpha(5)beta(1)(high) cells). FACS analysis of nestin-GFP(+) cortical cells revealed an additional subpopulation with reduced expression of alpha(5)beta(1) integrin (alpha(5)beta(1)(low) cells). The size of the alpha(5)beta(1)(low) subpopulation increased during cortical development. To investigate the correlation between integrin and neuronal differentiation, nestin-GFP(+) cortical progenitor cells were sorted into alpha(5)beta(1)(high) or alpha(5)beta(1)(low) populations, and each potential to differentiate was analyzed. We show that the nestin-GFP(+) alpha(5)beta(1)(high) population corresponded to broadly multipotential neural progenitor cells, whereas nestin-GFP(+) alpha(5)beta(1)(low) cells appeared to be committed to a neuronal fate. These findings suggest that alpha(5)beta(1) expression on cortical progenitor cells is developmentally regulated and its downregulation is involved in the process of neuronal differentiation.

PMID:
12837282
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk