Display Settings:

Format

Send to:

Choose Destination
Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8466-71. Epub 2003 Jun 27.

Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1.

Author information

  • 1Research Division, Joslin Diabetes Center, Boston, MA 02215, USA. mary.elizabeth.patti@joslin.harvard.edu

Abstract

Type 2 diabetes mellitus (DM) is characterized by insulin resistance and pancreatic beta cell dysfunction. In high-risk subjects, the earliest detectable abnormality is insulin resistance in skeletal muscle. Impaired insulin-mediated signaling, gene expression, glycogen synthesis, and accumulation of intramyocellular triglycerides have all been linked with insulin resistance, but no specific defect responsible for insulin resistance and DM has been identified in humans. To identify genes potentially important in the pathogenesis of DM, we analyzed gene expression in skeletal muscle from healthy metabolically characterized nondiabetic (family history negative and positive for DM) and diabetic Mexican-American subjects. We demonstrate that insulin resistance and DM associate with reduced expression of multiple nuclear respiratory factor-1 (NRF-1)-dependent genes encoding key enzymes in oxidative metabolism and mitochondrial function. Although NRF-1 expression is decreased only in diabetic subjects, expression of both PPAR gamma coactivator 1-alpha and-beta (PGC1-alpha/PPARGC1 and PGC1-beta/PERC), coactivators of NRF-1 and PPAR gamma-dependent transcription, is decreased in both diabetic subjects and family history-positive nondiabetic subjects. Decreased PGC1 expression may be responsible for decreased expression of NRF-dependent genes, leading to the metabolic disturbances characteristic of insulin resistance and DM.

PMID:
12832613
[PubMed - indexed for MEDLINE]
PMCID:
PMC166252
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk