Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2003 Sep 12;278(37):34998-5015. Epub 2003 Jun 24.

Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae.

Author information

  • 1National Center for Natural Products Research, University of Mississippi School of Pharmacy, University, Mississippi 38677, USA. aagarwal@olemiss.edu

Abstract

Antifungal compounds exert their activity through a variety of mechanisms, some of which are poorly understood. Novel approaches to characterize the mechanism of action of antifungal agents will be of great use in the antifungal drug development process. The aim of the present study was to investigate the changes in the gene expression profile of Saccharomyces cerevisiae following exposure to representatives of the four currently available classes of antifungal agents used in the management of systemic fungal infections. Microarray analysis indicated differential expression of 0.8, 4.1, 3.0, and 2.6% of the genes represented on the Affymetrix S98 yeast gene array in response to ketoconazole, amphotericin B, caspofungin, and 5-fluorocytosine (5-FC), respectively. Quantitative real time reverse transcriptase-PCR was used to confirm the microarray analyses. Genes responsive to ketoconazole, caspofungin, and 5-FC were indicative of the drug-specific effects. Ketoconazole exposure primarily affected genes involved in ergosterol biosynthesis and sterol uptake; caspofungin exposure affected genes involved in cell wall integrity; and 5-FC affected genes involved in DNA and protein synthesis, DNA damage repair, and cell cycle control. In contrast, amphotericin B elicited changes in gene expression reflecting cell stress, membrane reconstruction, transport, phosphate uptake, and cell wall integrity. Genes with the greatest specificity for a particular drug were grouped together as drug-specific genes, whereas genes with a lack of drug specificity were also identified. Taken together, these data shed new light on the mechanisms of action of these classes of antifungal agents and demonstrate the potential utility of gene expression profiling in antifungal drug development.

PMID:
12824174
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk