Display Settings:


Send to:

Choose Destination
Exp Neurol. 2003 Jul;182(1):232-9.

Effects of long-term theophylline exposure on recovery of respiratory function and expression of adenosine A1 mRNA in cervical spinal cord hemisected adult rats.

Author information

  • 1Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA. knantwi@med.wayne.edu


Our lab has previously shown that when administered acutely, the methylxanthine theophylline can activate a latent respiratory motor pathway to restore function to the hemidiaphragm paralyzed by an ipsilateral C2 spinal cord hemisection. The recovery is mediated by the antagonism of CNS adenosine A1 receptors. The objective of the present study was to assess quantitatively recovery after chronic theophylline administration, the effects of weaning from the drug, and the effects of the drug on adenosine A1 receptor mRNA expression in adult rats subjected to a C2 hemisection. Rats subjected to a left C2 hemisection received theophylline orally for 3, 7, 12, or 30 days and were classified as 3D, 7D, 12D, or 30D respectively. Separate groups of 3D animals were weaned from drug administration for 7, 12, and 30 days before assessment of respiratory recovery. Additional groups of 7D and 12D animals were also weaned from drug administration for 7 and 12 days prior to assessment. Sham-operated controls received theophylline vehicle for similar periods. Quantitative assessment of recovered respiratory activity was conducted under standardized electrophysiologic recording conditions approximately 18 h after each drug application period. Serum theophylline analysis was conducted at the end of electrophysiologic recordings. Adenosine A1 receptor mRNA expression in the phrenic nucleus was assessed with in situ hybridization and immunohistochemistry. Chronic theophylline induced a dose-dependent effect on respiratory recovery over a serum theophylline range of 1.2-1.9 microg/ml. Recovery was characterized as respiratory-related activity in the left phrenic nerve and expressed as a percentage of activity in the homolateral nerve in noninjured animals under similar recording conditions. Recovered activity was 34.13 +/- 2.07, 55.89 +/- 2.96, 74.78 +/- 1.93, and 79.12 +/- 1.75% respectively in the 3D, 7D, 12D, and 30D groups. Theophylline-induced recovered activity persisted for as long as 30 days when drug administration was stopped and serum levels of the drug were virtually undetected. Furthermore, recovered activity in 3D and 7D animals increased significantly as a function of duration of weaning. Adenosine A1 receptor mRNA expression was not significantly changed by theophylline administration. It is concluded that recovery of respiratory function in C2-hemisected rats induced by chronic theophylline is unrelated to adenosine A1 receptor mRNA expression. Recovered activity persists even when drug administration has been stopped. The significance of our results is that in the clinical application of theophylline to improve respiratory impairment, intermittent drug administration may be sufficient to engender and maintain the therapeutic benefits of the drug.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk