Send to:

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2003 Jun;19(2 Pt 1):354-64.

The impact of individual differences on the neural circuitry underlying sadness.

Author information

  • 1Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada.


Several functional neuroimaging studies have been carried out in healthy subjects to investigate the neural correlates of sadness. Importantly, there is little consistency among the results of these studies. Hypothesizing that individual differences may account for the discrepancies among these investigations, we conducted two functional magnetic resonance imaging (fMRI) studies to identify the neural circuitry underlying this basic emotion. In these two methodologically identical studies, two different groups (n = 10 for each study) of healthy female subjects were scanned while they were experiencing a transient state of sadness induced by viewing sad film excerpts. In the first of these studies, sadness was correlated with significant loci of activation in the anterior temporal pole and insula (P < 0.05, corrected). In the second study, however, sadness was correlated with significant activation in the orbitofrontal and medial prefrontal cortices (P < 0.05, corrected). In addition, individual statistical parametric maps revealed a marked degree of interindividual variability in both Study 1 and Study 2. These results strongly support the view that individual differences may be responsible for the inconsistencies found in the literature regarding the neural substrates of sadness and of other basic emotions. These findings also suggest that individual data should be reported in addition to group data, because they provide useful information about the variability present in the subjects investigated and, thus, about the typicality and generalizability of the results.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk