Format

Send to:

Choose Destination
See comment in PubMed Commons below
RNA. 2003 Jul;9(7):892-904.

Characterization of the catalytic activity of U2 and U6 snRNAs.

Author information

  • 1Department of Biological Sciences, Columbia University, New York, New York 10027, USA.

Abstract

Removal of introns from pre-messenger RNAs in eukaryotes is carried out by the spliceosome, an assembly of a large number of proteins and five small nuclear RNAs (snRNAs). We showed previously that an in vitro transcribed and assembled base-paired complex of U2 and U6 snRNA segments catalyzes a reaction that resembles the first step of splicing. Upon incubation with a short RNA oligonucleotide containing the consensus sequence of the pre-mRNA branch site, the U2/U6 complex catalyzed a reaction between the 2' OH of a bulged adenosine and a phosphate in the catalytically important AGC triad of U6, leading to the formation of an X-shaped product, RNA X, apparently linked by an unusual phosphotriester bond. Here we characterize this splicing-related reaction further, showing that RNA X formation is an equilibrium reaction, and that the low yield of the reaction likely reflects an unfavorable equilibrium coefficient. Consistent with a phosphotriester linkage, RNA X is highly alkali-sensitive, but only mildly acid-sensitive. We also show that mutations in the AGC sequence of U6 can have significant effects on RNA X formation, further extending the similarities between splicing and RNA X formation. We also demonstrate that pseudouridylation of U2 enhances RNA X formation, and that U6 snRNA purified from nuclear extracts is capable of forming RNA X. Our data suggest that the ability to form RNA X might be an intrinsic property of spliceosomal snRNAs.

PMID:
12810922
[PubMed - indexed for MEDLINE]
PMCID:
PMC1370455
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk