Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2003 Aug 29;278(35):33150-60. Epub 2003 Jun 10.

A critical role for ATP in the stimulation of retinal guanylyl cyclase by guanylyl cyclase-activating proteins.

Author information

  • 1Kresge Eye Institute and the Department of Ophthalmology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA. ayamazak@med.wayne.edu

Abstract

It has been believed that retinal guanylyl cyclase (retGC), a key enzyme in the cGMP recovery to the dark state, is solely activated by guanylyl cyclase-activating proteins (GCAPs) in a Ca2+-sensitive manner. However, a question has arisen as to whether the observed GCAP stimulation of retGC is sufficient to account for the cGMP recovery because the stimulated activity measured in vitro is less than the light/GTP-activated cGMP phosphodiesterase activity. Here we report that the retGC activation by GCAPs is larger than previously reported and that a preincubation with adenine nucleotide is essential for the large activation. Under certain conditions, ATP is two times more effective than adenylyl imidodiphosphate (AMP-PNP), a hydrolysis-resistant ATP analog; however, this study mainly used AMP-PNP to focus on the role of adenine nucleotide binding to retGC. When photoreceptor outer segment homogenates are preincubated with AMP-PNP (EC50 = 0.65 +/- 0.20 mM), GCAP2 enhanced the retGC activity 10-13 times over the control rate. Without AMP-PNP, GCAP2 stimulated the control activity only 3-4-fold as in previous reports. The large activation is due to a GCAP2-dependent increase in Vmax without an alteration of retGC affinity for GCAP2 (EC50 = 47.9 +/- 2.7 nM). GCAP1 stimulated retGC activity in a similar fashion but with lower affinity (EC50 = 308 nM). In the AMP-PNP preincubation, low Ca2+ concentrations are not required, and retGC exists as a monomeric form. This large activation is accomplished through enhanced action of GCAPs as shown by Ca2+ inhibition of the activity (IC50 = 178 nM). We propose that retGC is activated by a two-step mechanism: a conformational change by ATP binding to its kinase homology domain under high Ca2+ concentrations that allows large enhancement of GCAP activation under low Ca2+ concentrations.

PMID:
12799385
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk