Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
FEBS Lett. 2003 Jun 12;545(1):9-17.

Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism?

Author information

  • 1Universität Frankfurt, Fachbereich Medizin, Institut für Biochemie I, Theodor-Stern-Kai 7, Haus 25B, D-60590 Frankfurt am Main, Germany. brandt@zbc.kgu.de

Abstract

The modular evolutionary origin of NADH:ubiquinone oxidoreductase (complex I) provides useful insights into its functional organization. Iron-sulfur cluster N2 and the PSST and 49 kDa subunits were identified as key players in ubiquinone reduction and proton pumping. Structural studies indicate that this 'catalytic core' region of complex I is clearly separated from the membrane. Complex I from Escherichia coli and Klebsiella pneumoniae was shown to pump sodium ions rather than protons. These new insights into structure and function of complex I strongly suggest that proton or sodium pumping in complex I is achieved by conformational energy transfer rather than by a directly linked redox pump.

PMID:
12788486
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk