Format

Send to:

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2003 May 15;37(10):2145-51.

Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity.

Author information

  • 1Department of Aquatic Ecology and Ecotoxicology, Faculty of Science, University of Amsterdam, P.O. Box 94084, 1090 GB Amsterdam, The Netherlands. heugens@science.uva.nl

Abstract

Standard toxicity tests are performed at one constant, optimal temperature (usually 20 degrees C), while in the field variable and suboptimal temperatures may occur. Lack of knowledge on the interactions between chemicals and temperature hampers the extrapolation of laboratory toxicity data to ecosystems. Therefore, the aim of this study was to analyze the effects of temperature on cadmium toxicity to the waterflea Daphnia magna and to address possible processes responsible for temperature-dependent toxicity. This was investigated by performing standard toxicity tests with D. magna under a wide temperature range. Thermal effects on accumulation kinetics were determined by estimating uptake and elimination rates from accumulation experiments. To study temperature dependency of the intrinsic sensitivity of the daphnids to cadmium, the DEBtox model was used to estimate internal threshold concentrations (ITCs) and killing rates from the toxicity and accumulation data. The results revealed that increasing temperature lowered the ITC and increased the killing rate and the uptake rate of the metal. Enhanced sensitivity of D. magna was shown to be the primary factor for temperature-dependent toxicity. Since temperature has such a major impact on toxicity, a temperature correction may be necessary when translating toxicity data from the laboratory to the field.

PMID:
12785520
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk