Display Settings:

Format

Send to:

Choose Destination
Development. 2003 Jul;130(14):3217-26.

Interactions between the secreted protein Amalgam, its transmembrane receptor Neurotactin and the Abelson tyrosine kinase affect axon pathfinding.

Author information

  • 1Department of Biology, Denison University, Granville, OH 43023, USA. liebl@denison.edu

Abstract

Two novel dosage-sensitive modifiers of the Abelson tyrosine kinase (Abl) mutant phenotype have been identified. Amalgam (Ama) is a secreted protein that interacts with the transmembrane protein Neurotactin (Nrt) to promote cell:cell adhesion. We have identified an unusual missense ama allele, ama(M109), which dominantly enhances the Abl mutant phenotype, affecting axon pathfinding. Heterozygous null alleles of ama do not show this dominant enhancement, but animals homozygous mutant for both ama and Abl show abnormal axon outgrowth. Cell culture experiments demonstrate the Ama(M109) mutant protein binds to Nrt, but is defective in mediating Ama/Nrt cell adhesion. Heterozygous null alleles of nrt dominantly enhance the Abl mutant phenotype, also affecting axon pathfinding. Furthermore, we have found that all five mutations originally attributed to disabled are in fact alleles of nrt. These results suggest Ama/Nrt-mediated adhesion may be part of signaling networks involving the Abl tyrosine kinase in the growth cone.

PMID:
12783792
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk