Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Circulation. 2003 Jun 10;107(22):2850-6. Epub 2003 Jun 2.

Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy.

Author information

  • 1Department of Genetics, Harvard Medical School and Howard Hughes Medical Institute, 200 Longwood Ave, Boston, Mass 02115, USA.

Abstract

BACKGROUND:

Mutations in the gamma2 subunit (PRKAG2) of AMP-activated protein kinase produce an unusual human cardiomyopathy characterized by ventricular hypertrophy and electrophysiological abnormalities: Wolff-Parkinson-White syndrome (WPW) and progressive degenerative conduction system disease. Pathological examinations of affected human hearts reveal vacuoles containing amylopectin, a glycogen-related substance.

METHODS AND RESULTS:

To elucidate the mechanism by which PRKAG2 mutations produce hypertrophy with electrophysiological abnormalities, we constructed transgenic mice overexpressing the PRKAG2 cDNA with or without a missense N488I human mutation. Transgenic mutant mice showed elevated AMP-activated protein kinase activity, accumulated large amounts of cardiac glycogen (30-fold above normal), developed dramatic left ventricular hypertrophy, and exhibited ventricular preexcitation and sinus node dysfunction. Electrophysiological testing demonstrated alternative atrioventricular conduction pathways consistent with WPW. Cardiac histopathology revealed that the annulus fibrosis, which normally insulates the ventricles from inappropriate excitation by the atria, was disrupted by glycogen-filled myocytes. These anomalous microscopic atrioventricular connections, rather than morphologically distinct bypass tracts, appeared to provide the anatomic substrate for ventricular preexcitation.

CONCLUSIONS:

Our data establish PRKAG2 mutations as a glycogen storage cardiomyopathy, provide an anatomic explanation for electrophysiological findings, and implicate disruption of the annulus fibrosis by glycogen-engorged myocytes as the cause of preexcitation in Pompe, Danon, and other glycogen storage diseases.

PMID:
12782567
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk