Surface quasigeostrophic turbulence: The study of an active scalar

Chaos. 2002 Jun;12(2):439-450. doi: 10.1063/1.1480758.

Abstract

We study the statistical and geometrical properties of the potential temperature (PT) field in the surface quasigeostrophic (SQG) system of equations. In addition to extracting information in a global sense via tools such as the power spectrum, the g-beta spectrum, and the structure functions we explore the local nature of the PT field by means of the wavelet transform method. The primary indication is that an initially smooth PT field becomes rough (within specified scales), though in a qualitatively sparse fashion. Similarly, initially one-dimensional iso-PT contours (i.e., PT level sets) are seen to acquire a fractal nature. Moreover, the dimensions of the iso-PT contours satisfy existing analytical bounds. The expectation that the roughness will manifest itself in the singular nature of the gradient fields is confirmed via the multifractal nature of the dissipation field. Following earlier work on the subject, the singular and oscillatory nature of the gradient field is investigated by examining the scaling of a probability measure and a sign singular measure, respectively. A physically motivated derivation of the relations between the variety of scaling exponents is presented, the aim being to bring out some of the underlying assumptions which seem to have gone unnoticed in previous presentations. Apart from concentrating on specific properties of the SQG system, a broader theme of the paper is a comparison of the diagnostic inertial range properties of the SQG system with both the two- and three-dimensional Euler equations. (c) 2002 American Institute of Physics.