Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2003 Aug 8;278(32):29633-9. Epub 2003 May 29.

ADAMTS-13 metalloprotease interacts with the endothelial cell-derived ultra-large von Willebrand factor.

Author information

  • 1Thrombosis Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA. jfdong@bcm.tmc.edu

Abstract

Thrombotic thrombocytopenic purpura is caused by congenital or acquired deficiency of ADAMTS-13, a metalloprotease that cleaves the endothelium-derived ultra-large multimers of von Willebrand factor (ULVWF). The proteolysis converts hyper-reactive and thrombogenic ULVWF into smaller and less adhesive plasma forms. Activity of ADAMTS-13 is usually measured in a static system under non-physiological conditions that require protein denaturation and prolonged incubation. We have demonstrated previously that ULVWF multimers, upon release from endothelial cells, form platelet-decorated string-like structures that are rapidly cleaved by ADAMTS-13. Here we report the direct interaction between ADAMTS-13 and VWF under both static and flowing conditions. ADAMTS-13-coated beads adhered to both immobilized VWF and ULVWF strings presented by stimulated endothelial cells. These beads adhered to VWF under both venous (2.5 dynes/cm2) and arterial (30 dynes/cm2) shear stresses. We then demonstrated that ADAMTS-13 beads adhered to immobilized recombinant VWF-A1 and -A3 domains, but soluble metalloprotease bound preferentially to the A3 domain, suggesting that the VWF A3 domain may be the primary docking site for the metalloprotease. We suggest that tensile stresses imposed by fluid shear stretch endothelial bound ULVWF multimers to expose binding sites within the A domains for circulating ADAMTS-13. The bound enzyme then cleaves within the A2 domain that lies in close proximity and releases smaller VWF multimers into the plasma. Once released, these cleaved VWF fragments become inaccessible for the metalloprotease to prevent further cleavage.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk