Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2003 Oct 3;278(40):38557-65. Epub 2003 May 5.

Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells.

Author information

  • 1Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.

Abstract

Two cytochrome P450 (P450) cDNAs involved in the biosynthesis of berberine, an antimicrobial benzylisoquinoline alkaloid, were isolated from cultured Coptis japonica cells and characterized. A sequence analysis showed that one C. japonica P450 (designated CYP719) belonged to a novel P450 family. Further, heterologous expression in yeast confirmed that it had the same activity as a methylenedioxy bridge-forming enzyme (canadine synthase), which catalyzes the conversion of (S)-tetrahydrocolumbamine ((S)-THC) to (S)-tetrahydroberberine ((S)-THB, (S)-canadine). The other P450 (designated CYP80B2) showed high homology to California poppy (S)-N-methylcoclaurine-3'-hydroxylase (CYP80B1), which converts (S)-N-methylcoclaurine to (S)-3'-hydroxy-N-methylcoclaurine. Recombinant CYP719 showed typical P450 properties as well as high substrate affinity and specificity for (S)-THC. (S)Scoulerine was not a substrate of CYP719, indicating that some other P450, e.g. (S)-cheilanthifoline synthase, is needed in (S)-stylopine biosynthesis. All of the berberine biosynthetic genes, including CYP719 and CYP80B2, were highly expressed in selected cultured C. japonica cells and moderately expressed in root, which suggests coordinated regulation of the expression of biosynthetic genes.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk