Coordination of cellular pattern-generating circuits that control limb movements: the sources of stable differences in intersegmental phases

J Neurosci. 2003 Apr 15;23(8):3457-68. doi: 10.1523/JNEUROSCI.23-08-03457.2003.

Abstract

Neuronal mechanisms in nervous systems that keep intersegmental phase lags the same at different frequencies are not well understood. We investigated biophysical mechanisms that permit local pattern-generating circuits in neighboring segments to maintain stable phase differences. We use a modified version of an existing model of the crayfish swimmeret system that is based on three known coordinating neurons and hypothesized intersegmental synaptic connections. Weakly coupled oscillator theory was used to derive coupling functions that predict phase differences between neurons in neighboring segments. We show how features controlling the size of the lag under simplified network configurations combine to create realistic lags in the full network. Using insights from the coupled oscillator theory analysis, we identify an alternative intersegmental connection pattern producing realistic stable phase differences. We show that the persistence of a stable phase lag to changes in frequency can arise from complementary effects on the network with ascending-only or descending-only intersegmental connections. To corroborate the numerical results, we experimentally constructed phase-response curves (PRCs) for two different coordinating interneurons in the swimmeret system by perturbing the firing of individual interneurons at different points in the cycle of swimmeret movement. These curves provide information about the contribution of individual intersegmental connections to the stable phase lag. We also numerically constructed PRCs for individual connections in the model. Similarities between the experimental and numerical PRCs confirm the plausibility of the network configuration that has been proposed and suggest that the same stabilizing balance present in the model underlies the normal phase-constant behavior of the swimmeret system.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Astacoidea
  • Biological Clocks / physiology
  • Extremities / innervation
  • Extremities / physiology*
  • In Vitro Techniques
  • Interneurons / physiology
  • Models, Neurological*
  • Movement / physiology*
  • Nerve Net / physiology
  • Reaction Time / physiology