Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2003 Apr 20;42(12):2085-93.

Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field.

Author information

  • 1Diagnostic Instrumentation and Analysis Laboratory, Mississippi State University, 205 Research Boulevard, Starkville, Mississippi 89759-7704, USA.

Abstract

The optical properties of laser-induced plasma generated firm solid (Al alloy) and liquid (Mn, Cr, Mg, or Ti solutions) samples expanded across an external, steady magnetic field have been studied by atomic-emission spectroscopy. Various line emissions obtained from the constituents of the Al alloy and of the aqueous solution show an enhancement in intensity in the presence of an approximately 5-kG magnetic field. The enhancement of the signal was nearly a factor of 2 for the minor constituents of the solid samples and a factor of 1.5 for the elements in liquid phase. Temporal evolution of the emission from the solid sample showed maximum enhancement in emission intensity at 3-10-micros time delay after plasma formation in the laser energy range 10-50 mJ. However, for the liquid sample the maximum signal was for a gate delay of 3-25 micros the energy range 50-200 mJ. This enhancement in the emission intensity was found to be due to an increase in effective density of the plasma as a result of magnetic confinement when the plasma cooled after expansion. This enhanced emission was due to an increase in the rate of radiative recombination in the plasma.

PMID:
12716149
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk