Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Arch Microbiol. 2003 Jun;179(6):409-15. Epub 2003 Apr 24.

A novel type of lycopene epsilon-cyclase in the marine cyanobacterium Prochlorococcus marinus MED4.

Author information

  • 1Botanical Institute, J.W. Goethe University, P.O. Box 111932, 60054 Frankfurt, Germany.

Abstract

Chlorophyll- b-possessing cyanobacteria of the genus Prochlorococcus share the presence of high amounts of alpha- and beta-carotenoids with green algae and higher plants. The branch point in carotenoid biosynthesis is the cyclization of lycopene, for which in higher plants two distinct enzymes are required, epsilon- and beta-lycopene cyclase. All cyanobacteria studied so far possess a single beta-cyclase. Here, two different Prochlorococcus sp. MED4 genes were functionally identified by heterologous gene complementation in Escherichia coli to encode lycopene cyclases. Whereas one is both functionally and in sequence highly similar to the beta-cyclase of Synechococcus sp. strain PCC 7942 and other cyanobacteria, the other showed several intriguing features. It acts as a bifunctional enzyme catalyzing the formation of epsilon- as well as of beta-ionone end groups. Expression of this cyclase in E. coli resulted in the simultaneous accumulation of alpha- beta-, delta-, and epsilon-carotene. Such an activity is in contrast to all lycopene epsilon-cyclases known so far, including those of the higher plants. Thus, for the first time among prokaryotes, two individual enzymes were identified in one organism that are responsible for the formation of cyclic carotenoids with either beta- or epsilon-end groups. These two genes are suggested to be designated as crtL-b and crtL-e. The results indicate that both enzymes might have originated from duplication of a single gene. Consequently, we suggest that multiple gene duplications followed by functional diversification resulted several times, and in independent lineages, in the appearance of enzymes for the biosynthesis of cyclic carotenoids.

PMID:
12712234
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Springer
    Loading ...
    Write to the Help Desk