Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
FASEB J. 2003 Jun;17(9):1186-8. Epub 2003 Apr 22.

Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors.

Author information

  • 1Department of Nephrology and Medical Intensive Care, Charité, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.

Abstract

Hypoxia-inducible transcription factors (HIF) mediate complex adaptations to reduced oxygen supply, including neoangiogenesis. Regulation of HIF occurs mainly through oxygen-dependent destruction of its alpha subunit. In the presence of oxygen, two HIFalpha prolyl residues undergo enzymatic hydroxylation, which is required for its proteasomal degradation. We therefore tested whether pharmacological activation of HIFalpha by hydroxylase inhibitors may provide a novel therapeutic strategy for the treatment of ischemic diseases. Three distinct prolyl 4-hydroxylase inhibitors-l-mimosine (L-Mim), ethyl 3,4-dihydroxybenzoate (3,4-DHB), and 6-chlor-3-hydroxychinolin-2-carbonic acid-N-carboxymethylamid (S956711)-demonstrated similar effects to hypoxia (0.5% O2) by inducing HIFalpha protein in human and rodent cells. L-Mim, S956711, and, less effectively, 3,4-DHB also induced HIF target genes in cultured cells, including glucose transporter 1 and vascular endothelial growth factor, as well as HIF-dependent reporter gene expression. Systemic administration of L-Mim and S956711 in rats led to HIFalpha induction in the kidney. In a sponge model for angiogenesis, repeated local injection of the inhibitors strongly increased invasion of highly vascularized tissue into the sponge centers. In conclusion, structurally distinct inhibitors of prolyl hydroxylation are capable of inducing HIFalpha and HIF target genes in vitro and in vivo and induce adaptive responses to hypoxia, including angiogenesis.

PMID:
12709400
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk