Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Orthop Res. 2003 May;21(3):420-31.

Repair of patellar tendon injuries using a cell-collagen composite.

Author information

  • 1Noyes-Giannestras Biomechanics Laboratories, Department of Biomedical Engineering, University of Cincinnati, 2901 Campus Drive, P.O. Box 210048, OH 45221-0048, USA.

Abstract

Collagen gels were seeded with rabbit bone marrow-derived mesenchymal stem cells (MSCs) and contracted onto sutures at initial cell densities of 1, 4, and 8 million cells/ml. These MSC-collagen composites were then implanted into full thickness, full length, central defects created in the patellar tendons of the animals providing the cells. These autologous repairs were compared to natural repair of identical defects on the contralateral side. Biomechanical, histological, and morphometric analyses were performed on both repair tissue types at 6, 12, and 26 weeks after surgery. Repair tissues containing the MSC-collagen composites showed significantly higher maximum stresses and moduli than natural repair tissues at 12 and 26 weeks postsurgery. However, no significant differences were observed in any dimensional or mechanical properties of the repair tissues across seeding densities at each evaluation time. By 26 weeks, the repairs grafted with MSC-collagen composites were one-fourth of the maximum stress of the normal central portion of the patellar tendon with bone ends. The modulus and maximum stress of the repair tissues grafted with MSC-collagen composites increased at significantly faster rates than did natural repairs over time. Unexpectedly, 28% of the MSC-collagen grafted tendons formed bone in the regenerating repair site. Except for increased repair tissue volume, no significant differences in cellular organization or histological appearance were observed between the natural repairs and MSC-collagen grafted repairs. Overall, these results show that surgically implanting tissue engineered MSC-collagen composites significantly improves the biomechanical properties of tendon repair tissues, although greater MSC concentrations produced no additional significant histological or biomechanical improvement.

PMID:
12706014
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk