Format

Send to:

Choose Destination
See comment in PubMed Commons below
Arch Toxicol. 2003 Apr;77(4):218-26. Epub 2003 Feb 20.

Effects of dexfenfluramine on aristolochic acid nephrotoxicity in a rat model for Chinese-herb nephropathy.

Author information

  • 1Laboratoire de Recherche sur le Métabolisme des Peptides (L.R.M.P.), Faculté de Médecine, Université Libre de Bruxelles, 1070, Brussels, Belgium.

Abstract

Chinese-herb nephropathy (CHN) is a progressive renal interstitial fibrosis initially reported after concomitant intake of an anorexigen, (dex)fenfluramine, and a Chinese herb ( Aristolochia fangchi) containing nephrotoxic and carcinogenic aristolochic acid (AA). We thus tested the possible enhancing effect of the active enantiomer dexfenfluramine (DXF) on AA nephrotoxicity in a rat model for CHN. Groups of 12 salt-depleted male Wistar rats received daily subcutaneous injections of 7 mg/kg body weight DXF (DXF group), 7 mg/kg body weight AA (AA group), a combination of the same doses of AA and DXF (AA+DXF group), or vehicle (control group) for up to 35 days. Six animals per group were killed on day 10 and the remaining six on day 35. Renal function was evaluated by determining serum creatinine and urinary leucine aminopeptidase activity. Histological evaluation of kidney samples was performed and tubulointerstitial injuries were semiquantified. The DXF group did not differ from controls for any parameter. Similarly elevated serum creatinine levels, decreased leucine aminopeptidase enzymuria, and renal lesions were observed in the AA and the AA+DXF groups after both 10 and 35 days. The formation of specific AA-DNA adducts in liver and renal tissue samples was assessed by the (32)P-postlabelling method. Specific AA-DNA adduct levels were significantly increased in kidney tissues from AA+DXF rats compared with AA rats. These functional and histological data suggest that DXF does not enhance AA nephrotoxicity in a rat model for CHN. Further investigations are needed to clarify the mechanism by which DXF may enhance AA-DNA adduct formation.

PMID:
12698237
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk