Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Mol Microbiol. 2003 May;48(3):617-29.

RNA-modifying machines in archaea.

Author information

  • 1Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.

Abstract

It has been known for nearly half a century that coding and non-coding RNAs (mRNA, and tRNAs and rRNAs respectively) play critical roles in the process of information transfer from DNA to protein. What is both surprising and exciting, are the discoveries in the last decade that cells, particularly eukaryotic cells, contain a plethora of non-coding RNAs and that these RNAs can either possess catalytic activity or can function as integral components of dynamic ribonucleoprotein machines. These machines appear to mediate diverse, complex and essential processes such as intron excision, RNA modification and editing, protein targeting, DNA packaging, etc. Archaea have been shown to possess RNP complexes; some of these are authentic homologues of the eukaryotic complexes that function as machines in the processing, modification and assembly of rRNA into ribosomal subunits. Deciphering how these RNA-containing machines function will require a dissection and analysis of the component parts, an understanding of how the parts fit together and an ability to reassemble the parts into complexes that can function in vitro. This article summarizes our current knowledge about small-non-coding RNAs in Archaea, their roles in ribosome biogenesis and their relationships to the complexes that have been identified in eukaryotic cells.

PMID:
12694609
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk