Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chem Res Toxicol. 2003 Jan;16(1):23-7.

Fraction of free-base nicotine in fresh smoke particulate matter from the Eclipse "cigarette" by 1H NMR spectroscopy.

Author information

  • 1Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, P.O. Box 91000, Portland, Oregon 97291-1000, USA.

Abstract

Solution 1H NMR (proton-NMR) spectroscopy was used to measure the distribution of nicotine between its free-base and protonated forms at 20 degrees C in (a) water; (b) glycerin/water mixtures; and (c) puff-averaged "smoke" particulate matter (PM) produced by the Eclipse cigarette, a so-called "harm reduction" cigarette manufactured by R. J. Reynolds (RJR) Tobacco Co. Smoke PM from the Eclipse contains glycerin, water, nicotine, and numerous other components. Smoke PM from the Eclipse yielded a signal for the three N-methyl protons on nicotine at a chemical shift of delta (ppm) = 2.79 relative to a trimethylsilane standard. With alpha fb = fraction of the total liquid nicotine in free-base form, and alpha a = fraction in the acidic, monoprotonated NicH+ form, then alpha a + alpha fb approximately 1. (The diprotonated form of nicotine was assumed negligible.) When the three types of solutions were adjusted so that alpha a approximately 1, the N-methyl protons yielded delta a = 2.82 (Eclipse smoke PM); 2.79 (35% water/65% glycerin); and 2.74 (water). When the solutions were adjusted so that alpha fb approximately 1, the N-methyl protons yielded delta fb = 2.16 (Eclipse smoke PM); 2.13 (35% water/65% glycerin); and 2.10 (water). In all of the solutions, the rate of proton exchange between NicH+ and Nic was fast relative to the 1H-NMR chemical shift difference in hertz. Each solution containing both NicH+ and Nic thus yielded a single N-methyl peak at a delta given by delta = alpha a delta a + alpha fb delta fb so that delta varied linearly between delta a and delta fb. Since alpha fb = (delta a-delta)/(delta a-delta fb), then delta = 2.79 for the unadjusted Eclipse smoke PM indicates alpha fb approximately 0.04. The effective pH of the Eclipse smoke PM at 20 degrees C may then be calculated as pHeff = 8.06 + log[alpha fb/(1-alpha fb)] = 6.69, where 8.06 is the pKa of NicH+ in water at 20 degrees C. The measurements obtained for the puff-averaged Eclipse smoke PM pertain to the chemistry of the smoke PM as it might be initially inhaled at 20 degrees C. Upon inhalation, the volatilization of nicotine and other acid/base active compounds (as well as a warming toward a body temperature of 37 degrees C) will alter the pHeff value of the smoke PM during the time that it resides and ages in the respiratory tract.

PMID:
12693027
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk