Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Glycobiology. 2003 Jul;13(7):521-7. Epub 2003 Apr 2.

Aberrant O-glycosylation inhibits stable expression of dysadherin, a carcinoma-associated antigen, and facilitates cell-cell adhesion.

Author information

  • 1Pathology Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.

Abstract

Recently, we identified dysadherin, a novel carcinoma-associated glycoprotein, and showed that overexpression of dysadherin in human hepatocarcinoma PLC/PRF/5 cells could suppress E-cadherin-mediated cell-cell adhesion and promote tumor metastasis. The present study shows evidence that dysadherin is actually O-glycosylated. This was based on a direct carbohydrate composition analysis of a chimera protein of an extracellular domain of dysadherin fused to an Fc fragment of immunoglobulin. To assess the importance of O-glycosylation in dysadherin function, dysadherin-transfected hepatocarcinoma cells were cultured in a medium containing benzyl-alpha-GalNAc, a modulator of O-glycosylation. This treatment facilitated homotypic cell adhesion among dysadherin transfectants accompanied with morphological changes, indicating that the anti-adhesive effect of dysadherin was weakened. Modification of O-glycan synthesis also resulted in down-regulation of dysadherin expression and up-regulation of E-cadherin expression in dysadherin transfectants but did not affect E-cadherin expression in mock transfectants. Structural analysis of O-glycans released from the dysadherin chimera proteins indicated that a series of O-glycans with core 1 and 2 structures are attached to dysadherin, and their sialylation is remarkably inhibited by benzyl-alpha-GalNAc treatment. However, sialidase treatment of the cells did not affect calcium-dependent cell aggregation, which excluded the possibility that sialic acid itself is directly involved in cell-cell adhesion. We suggest that aberrant O-glycosylation in carcinoma cells inhibits stable expression of dysadherin and leads to the up-regulation of E-cadherin expression by an unknown mechanism, resulting in increased cell-cell adhesion. The carbohydrate-directed approach to the regulation of dysadherin expression might be a new strategy for cancer therapy.

PMID:
12672699
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk