Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2003 Apr 8;42(13):3751-8.

Site-directed mutagenesis reveals the thermodynamic requirements for single-stranded DNA recognition by the telomere-binding protein Cdc13.

Author information

  • 1Department of Chemistry and Biochemistry, UCB 215, University of Colorado at Boulder, 80309-0215, USA.

Abstract

The essential Saccharomyces cerevisiae protein Cdc13 binds the conserved single-stranded overhang at the end of telomeres and mediates access of protein complexes involved in both end-capping and telomerase activity. The single-stranded DNA-binding domain (ssDBD) of Cdc13 exhibits both high affinity (K(d) of 3 pM) and sequence specificity for the GT-rich sequences present at yeast telomeres. We have used the ssDBD of Cdc13 to understand the sequence-specific recognition of extended single-stranded DNA (ssDNA). The recent structure of the Cdc13 DNA-binding domain revealed that ssDNA is recognized by a large protein surface containing an oligonucleotide/oligosaccharide-binding fold (OB-fold) augmented by an extended 30-amino acid loop. Contacts to ssDNA occur via a contiguous surface of aromatic, hydrophobic, and basic residues. A complete alanine scan of the binding interface has been used to determine the contribution of each contacting side chain to binding affinity. Substitution of any aromatic or hydrophobic residue at the interface was deleterious to binding (20 to >700-fold decrease in binding affinity), while tolerance for replacement of basic residues was observed. The important aromatic and hydrophobic contacts are spread throughout the extended interface, indicating that the entire surface is both structurally and thermodynamically required for binding. While all of these contacts are important, several of the individual alanine substitutions that abolish binding cluster to one region of the protein surface. This region is vital for recognition of four bases at the 5' end of the DNA and constitutes a "hotspot" of binding affinity.

PMID:
12667066
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

Miscellaneous

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk