Send to:

Choose Destination
See comment in PubMed Commons below
Blood. 2003 Jul 15;102(2):725-30. Epub 2003 Mar 27.

A novel missense mutation in the gamma-glutamylcysteine synthetase catalytic subunit gene causes both decreased enzymatic activity and glutathione production.

Author information

  • 1Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.


Gamma-glutamylcysteine synthetase (gamma-GCS) catalyzes the first and rate-limiting step in glutathione (GSH) biosynthesis: the adenosine triphosphate (ATP)-dependent ligation of glutamate and cysteine. gamma-GCS consists of a catalytic (gamma-GCSH) and modifier (gamma-GCSL) subunit. Hereditary deficiency of gamma-GCS has been reported in a small number of patients and is associated with low erythrocyte levels of gamma-GCS and GSH leading to hemolytic anemia. Here we report a novel gamma-GCSH mutation, isolated from the cDNA of 2 related patients diagnosed with gamma-GCS deficiency. Each was found to be homozygous for a C>T missense mutation at nucleotide 379, encoding for a predicted Arg127Cys amino acid change. Computerized structure modeling identified that the mutated amino acid lies within a cleft on the protein surface of gamma-GCSH, and the border of this cleft was shown to contain Cys249, an evolutionarily conserved residue that has been proven to lie near the binding site of gamma-GCSH. Transfection studies showed that the mutation is associated with decreased GSH production, and binding studies using purified recombinant protein showed that the mutant protein has markedly decreased enzymatic activity compared to wild type.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk