Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biol Chem. 2003 Jun 6;278(23):20490-9. Epub 2003 Mar 25.

Linked common polymorphisms in the gelatinase a promoter are associated with diminished transcriptional response to estrogen and genetic fitness.

Author information

  • 1Department of Medicine, Division of Nephrology, University of Hamburg, Hamburg D-20246, Germany.

Abstract

Gelatinase A (matrix metalloproteinase-2) plays a prominent role in multiple biologic processes. Prior studies have established critical roles for gelatinase A transcriptional regulation by defined enhancer elements. To determine possible functional single nucleotide polymorphisms within these elements, we determined the single nucleotide polymorphism distribution within 1,665 bp of the gelatinase A 5'-flanking region, using a healthy homogeneous Caucasian study group of 463 individuals. Among the polymorphisms detected, a G --> A transition at bp -1575 was located immediately 5' to a half-palindromic potential estrogen receptor binding site. In estrogen receptor-positive MCF-7 cells the -1575G allele functioned as an enhancer, whereas the -1575A allele reduced transcription activity significantly. Gel shift assays confirmed that the differences in allelic expression affected binding of the estrogen receptor-alpha to this region. Cotransfection experiments with an estrogen receptor-alpha expression vector in MDA-MB-231 cells, which do not constitutively express an estrogen receptor, revealed that estrogen receptor is absolutely required for enhancing activity. Allelic distribution analysis indicated that a previously reported C --> T transition within an Sp1 binding site at -1306 was in linkage disequilibrium with the -1575G --> A transition. Luciferase reporter studies of the linked variant -1575A -1306T allele versus the wild type -1575G -1306C allele demonstrated an additive reduction in estrogen-dependent reporter activity. The frequency of the -1575G --> A transition deviated significantly from the expected Hardy-Weinberg distribution in two independently assembled study populations consisting of healthy adult blood donors and newborns of Caucasian origin, both with a calculated 21% reduction in genetic fitness. Gelatinase A is a known estrogen-responsive gene and the demonstration of a loss of function polymorphism within an operational estrogen receptor binding site associated with a decrease in genetic fitness underscores the biologic significance of promoter polymorphism analyses.

PMID:
12657623
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk