Format

Send to:

Choose Destination
See comment in PubMed Commons below
Transgenic Res. 2003 Feb;12(1):71-82.

Stable inheritance of the antisense Waxy gene in transgenic rice with reduced amylose level and improved quality.

Author information

  • 1College of Bioscience & Biotechnology, Yangzhou University, 12 Wenhui Road, Yangzhou 225009, China.

Abstract

Amylose content in rice endosperm is a key determinant of eating and cooking quality. In the present study, a chimeric antisense construct, which contained a 756-bp antisense Waxy (Wx) gene DNA fragment from rice and the gusA coding sequence, both fused to the 3.1-kb rice Wx promoter, was efficiently introduced into several elite rice cultivars, both of japonica and indica type, via Agrobacterium. More than 200 independent transgenic lines were produced and integration transgene was confirmed by PCR and Southern blotting. Northern blot analysis suggested that the antisense Wx transcript interacted with both the endogenous Wx mature mRNA and unspliced transcripts, but only interaction with the mature mRNA resulted in reduced amylose synthesis. Analysis of GUS activity showed that the gusA fusion gene driven by the rice Wx promoter expressed highly in the endosperm of the transgenic rice plants. Varying degrees of reduction in amylose content, up to 96%, were found in seeds derived from these transformants. Consistently, opaque white seeds, similar to glutinous rice, were observed in several transgenic lines of japonica rice. In transgenic lines derived from indica rice, which usually has a high amylose level, significant reduction of amylose content was also found in the endosperm, but the levels of reduction were lower than those of japonica rice. Genetic analysis demonstrated that transgenes and improved amylose content were stably inherited (up to ninth generation) in these transgenic lines. Several elite transgenic lines with improved amylose level and quality have been selected for field evaluation.

PMID:
12650526
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk