Display Settings:

Format

Send to:

Choose Destination
Am J Physiol Heart Circ Physiol. 2003 Jul;285(1):H325-32. Epub 2003 Mar 20.

Caveolae-associated proteins in cardiomyocytes: caveolin-2 expression and interactions with caveolin-3.

Author information

  • 1Department of Pharmacology and Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.

Abstract

Caveolin-3 the muscle-specific caveolin isoform, acts like the more ubiquitously expressed caveolin-1 to sculpt caveolae, specialized membrane microdomains that serve as platforms to organize signal transduction pathways. Caveolin-2 is a structurally related isoform that alone does not drive caveolae biogenesis; rather, caveolin-2 cooperates with caveolin-1 to form caveolae in nonmuscle cells. Although caveolin-2 might be expected to interact in an fashion analogous to that of caveolin-3, it generally has not been detected in cardiomyocytes. This study shows that caveolin-2 and caveolin-3 are detected at low levels in ventricular myocardium and increase dramatically with age or when neonatal cardiomyocytes are placed in culture. In contrast, flotillins (caveolin functional homologs) are expressed at relatively constant levels in these preparations. In neonatal cardiac cultures, caveolin-2 and -3 expression is not influenced by thyroid hormone (a postnatal regulator of other cardiac gene products). The further evidence that caveolin-2 coimmunoprecipitates with caveolin-3 and floats with caveolin-3 by isopycnic centrifugation in cardiomyocyte cultures suggests that caveolin-2 may play a role in caveolae biogenesis and influence cardiac muscle physiology.

PMID:
12649076
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk