Send to

Choose Destination
See comment in PubMed Commons below
Neuropsychopharmacology. 2003 Mar;28(3):421-34. Epub 2002 Jul 19.

Control of 5-hydroxytryptamine release in the dorsal raphe nucleus by the noradrenergic system in rat brain. Role of alpha-adrenoceptors.

Author information

  • 1Department of Neurochemistry, Institut d' Investigacions Biomèdiques de Barcelona (CSIC), IDIBAPS, 08036 Barcelona, Spain.


The interactions between the brainstem serotonergic (5-hydroxytryptamine, 5-HT) and noradrenergic (NA) systems are important for the pathophysiology and treatment of affective disorders. We examined the influence of alpha-adrenoceptors on 5-HT and NA release in the rat dorsal raphe nucleus (DR) using microdialysis. 5-HT and NA concentrations in DR dialysates were virtually suppressed by TTX and increased by veratridine. The local and systemic administration of the alpha(1)-adrenoceptor antagonist prazosin reduced the DR 5-HT output but not that of NA. The maximal 5-HT reduction induced by local prazosin administration (-78% at 100 microM) was more marked than by its systemic administration (-43% at 0.3 mg/kg). The local application of NA and desipramine, to increase the tone on DR alpha(1)-adrenoceptors, did not enhance 5-HT release. The local (100 microM) or systemic (0.1-1 mg/kg s.c.) administration of clonidine reduced 5-HT and NA release (-48 and -79%, respectively, at 1 mg/kg), an effect reversed by RX-821002, which by itself increased both amines when given systemically. DSP-4 pretreatment prevented the effects of clonidine on 5-HT, suggesting the participation of alpha(2)-adrenoceptors on NA elements. Moreover, the systemic effect of clonidine on 5-HT (but not NA) was cancelled by lesion of the lateral habenula and by anesthesia, and was slightly enhanced by cortical transection. These data support the view that alpha(1)-adrenoceptors in the DR tonically stimulate 5-HT release, possibly at nearly maximal tone. Likewise, the 5-HT release is modulated by alpha(2)-adrenoceptors in NA neurons and in forebrain areas involved in the distal control of 5-HT neurons.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk