Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 2003 Mar;89(3):1640-8.

alpha 2-Adrenoceptor-mediated presynaptic modulation of GABAergic transmission in mechanically dissociated rat ventrolateral preoptic neurons.

Author information

  • 1Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.

Abstract

The ventrolateral preoptic nucleus (VLPO) is a key nucleus involved in the homeostatic regulation of sleep-wakefulness. Little is known, however, about the cellular mechanisms underlying its role in sleep regulation and how the neurotransmitters, such as GABA and noradrenaline (NA), are involved. In the present study we investigated GABAergic transmission to acutely dissociated VLPO neurons using an enzyme-free, mechanical dissociation procedure in which functional terminals remained adherent and we investigated how this GABAergic transmission was modulated by NA. As previously reported in slices, NA hyperpolarized multipolar VLPO neurons and depolarized bipolar VLPO neurons. NA also inhibited the release of GABA onto multipolar VLPO neurons but had no effect on GABAergic transmission to bipolar neurons. The inhibition of release was mediated by presynaptic alpha(2) adrenoceptors coupled to N-ethylmaleimide (NEM)-sensitive G-proteins which appeared to act via inhibition of adenylate cyclase and subsequent decreases in protein kinase A activity. The inhibition of GABA release did not, however, involve an inhibition of external Ca(2+) influx. The results indicate that all VLPO neurons contain GABAergic inputs and that the different morphological subgroups of VLPO neurons are correlated not only to different postsynaptic responses to NA but also to different presynaptic NA responses. Furthermore our results demonstrate an additional mechanism by which NA can modulate the excitability of multipolar VLPO neurons which may have important implications for its role in regulating sleep/wakefulness.

PMID:
12626630
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk