Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Endocrinol Metab. 2003 Apr;284(4):E655-62.

Altered energetic properties in skeletal muscle of men with well-controlled insulin-dependent (type 1) diabetes.

Author information

  • 1Department of Physiology and Biophysics, University of Washington Medical Center, Seattle 98195, USA.


This study asked whether the energetic properties of muscles are changed by insulin-dependent diabetes mellitus (or type 1 diabetes), as occurs in obesity and type 2 diabetes. We used (31)P magnetic resonance spectroscopy to measure glycolytic flux, oxidative flux, and contractile cost in the ankle dorsiflexor muscles of 10 men with well-managed type 1 diabetes and 10 age- and activity-matched control subjects. Each subject performed sustained isometric muscle contractions lasting 30 and 120 s while attempting to maintain 70-75% of maximal voluntary contraction force. An altered glycolytic flux in type 1 diabetic subjects relative to control subjects was apparent from significant differences in pH in muscle at rest and at the end of the 120-s bout. Glycolytic flux during exercise began earlier and reached a higher peak rate in diabetic patients than in control subjects. A reduced oxidative capacity in the diabetic patients' muscles was evident from a significantly slower phosphocreatine recovery from a 30-s exercise bout. Our findings represent the first characterization of the energetic properties of muscle from type 1 diabetic patients. The observed changes in glycolytic and oxidative fluxes suggest a diabetes-induced shift in the metabolic profile of muscle, consistent with studies of obesity and type 2 diabetes that point to common muscle adaptations in these diseases.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk