Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Reproduction. 2003 Jan;125(1):95-110.

The fundamental role of increased production of nitric oxide in lipopolysaccharide-induced embryonic resorption in mice.

Author information

  • 1Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Cientificas y Técnicas, Serrano 669, Capital Federal, 1414MEM, Buenos Aires, Argentina.


Nitric oxide (NO) fulfils important functions during pregnancy and has a role in implantation, decidualization, vasodilatation and myometrial relaxation. However, at high concentrations, such as those that are produced in sepsis, NO has toxic effects as it is a free radical. The aim of this study was to characterize uterine and decidual NO production in lipopolysaccharide (LPS)-induced embryonic resorption in mice and to determine which isoforms of nitric oxide synthase (NOS) take part. LPS produced 100% embryonic resorption at 24 h, with complete fetus expulsions at 48 h. Decidual and uterine NO production were increased by LPS, with maximum production at 6 h. This increase was due to the induction of expression of inducible nitric oxide synthase (iNOS) isoform in the decidua and uterus, and neuronal nitric oxide synthase (nNOS) isoform in the decidua, as detected by western blot analysis and immunohistochemistry. LPS increased iNOS expression in decidual and myometrial cells and increased nNOS expression in decidual cells. In addition, LPS caused fibrinolysis and infiltration of mesometrial decidua by macrophages positive for iNOS and CD14 (LPS receptor). Endothelial nitric oxide synthase (eNOS) was found in decidual and uterine arteries but LPS did not modify its expression. LPS induced CD14 expression in endometrial glands, and this could have amplified the inflammatory response. Aminoguanidine, an inhibitor of iNOS activity, totally reversed the LPS-induced embryonic resorption. This result could be explained by an inhibition of the increase in NO production but also by an inhibition of the cellular infiltration and fibrinolysis. These results show that NO fulfils a fundamental role in LPS-induced embryonic resorption.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk