Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 2003 Apr;89(4):2021-34. Epub 2002 Dec 27.

Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release.

Author information

  • 1Departments of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Abstract

Two forms of GABAergic inhibition coexist: fast synaptic neurotransmission and tonic activation of GABA receptors due to ambient GABA. The mechanisms regulating ambient GABA have not been well defined. Here we examined the role of the GABA transporter in the increase in ambient [GABA] induced by the anticonvulsant vigabatrin. Pretreatment of cultured rat hippocampal neurons with vigabatrin (100 microM) for 2-5 days led to a large increase in ambient [GABA] that was measured as the change in holding current induced by bicuculline during patch-clamp recordings. In contrast, there was a decrease in the frequency of spontaneous miniature inhibitory postsynaptic currents mIPSCs with no change in their amplitude distribution, and a decrease in the magnitude of IPSCs evoked by presynaptic stimulation during paired recordings. The increase in ambient [GABA] was not prevented by blockade of vesicular GABA release with tetanus toxin or removal of extracellular calcium. During perforated patch recordings, the increase in ambient [GABA] was prevented by blocking the GABA transporter, indicating that the GABA transporter was continuously operating in reverse and releasing GABA. In contrast, blocking the GABA transporter increased ambient [GABA] during whole cell patch-clamp recordings unless GABA and Na(+) were added to the recording electrode solution, indicating that whole cell recordings can lead to erroneous conclusions about the role of the GABA transporter in control of ambient GABA. We conclude that the equilibrium for the GABA transporter is a major determinant of ambient [GABA] and tonic GABAergic inhibition. We propose that fast GABAergic neurotransmission and tonic inhibition can be independently modified and play complementary roles in control of neuronal excitability.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk