Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2003 Mar 4;42(8):2431-40.

Metabolic buffering exerted by macromolecular crowding on DNA-DNA interactions: origin and physiological significance.

Author information

  • 1Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.

Abstract

Crowding, which characterizes the interior of all living cells, has been shown to dramatically affect biochemical processes, leading to stabilization of compact morphologies, enhanced macromolecular associations, and altered reaction rates. Due to the crowding-mediated shift in binding equilibria toward association, crowding agents were proposed to act as a metabolic buffer, significantly extending the range of intracellular conditions under which interactions occur. Crowding may, however, impose a liability because, by greatly and generally enhancing macromolecular association, it can lead to irreversible interactions. To better understand the physical determinants and physiological consequences of crowding-mediated buffering, we studied the effects of crowding, or excluded volume, on DNA structures. Results obtained from isothermal titration calorimetry (ITC) and UV melting experiments indicate that crowding-induced effects are marginal under conditions that a priori favor association of DNA strands but become progressively larger when conditions deteriorate. As such, crowding exerts "genuine" buffering activity. Unexpectedly, crowding-mediated effects are found to include enthalpy terms that favorably contribute to association processes. We propose that these enthalpy terms and preferential stabilization derive from a reconfiguration of DNA hydration that occurs in dense DNA-rich phases obtained in crowded environments.

PMID:
12600210
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk