Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Genomics. 2003 Feb 3;4(1):5.

Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins.

Author information

  • 1National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA. lakshmin@ncbi.nlm.nih.gov

Abstract

BACKGROUND:

Soluble guanylyl cyclases (SGCs) are dimeric enzymes that transduce signals downstream of nitric oxide (NO) in animals. They sense NO by means of a heme moiety that is bound to their N-terminal extensions.

RESULTS:

Using sequence profile searches we show that the N-terminal extensions of the SGCs contain two globular domains. The first of these, the HNOB (Heme NO Binding) domain, is a predominantly alpha-helical domain and binds heme via a covalent linkage to histidine. Versions lacking this conserved histidine and are likely to interact with heme non-covalently. We detected HNOB domains in several bacterial lineages, where they occur fused to methyl accepting domains of chemotaxis receptors or as standalone proteins. The standalone forms are encoded by predicted operons that also contain genes for two component signaling systems and GGDEF-type nucleotide cyclases. The second domain, the HNOB associated (HNOBA) domain occurs between the HNOB and the cyclase domains in the animal SGCs. The HNOBA domain is also detected in bacteria and is always encoded by a gene, which occurs in the neighborhood of a gene for a HNOB domain.

CONCLUSION:

The HNOB domain is predicted to function as a heme-dependent sensor for gaseous ligands, and transduce diverse downstream signals, in both bacteria and animals. The HNOBA domain functionally interacts with the HNOB domain, and possibly binds a ligand, either in cooperation, or independently of the latter domain. Phyletic profiles and phylogenetic analysis suggest that the HNOB and HNOBA domains were acquired by the animal lineage via lateral transfer from a bacterial source.

PMID:
12590654
[PubMed - indexed for MEDLINE]
PMCID:
PMC149354
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk