Display Settings:


Send to:

Choose Destination
Mol Microbiol. 2003 Feb;47(4):1163-81.

Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae.

Author information

  • 1Laboratorium voor Moleculaire Celbiologie, Instituut voor Plantkunde en Microbiologie, Katholieke Universiteit Leuven, Belgium.


Yeast cells starved for inorganic phosphate on a glucose-containing medium arrest growth and enter the resting phase G0. We show that re-addition of phosphate rapidly affects well known protein kinase A targets: trehalase activation, trehalose mobilization, loss of heat resistance, repression of STRE-controlled genes and induction of ribosomal protein genes. Phosphate-induced activation of trehalase is independent of protein synthesis and of an increase in ATP. It is dependent on the presence of glucose, which can be detected independently by the G-protein coupled receptor Gpr1 and by the glucose-phosphorylation dependent system. Addition of phosphate does not trigger a cAMP signal. Despite this, lowering of protein kinase A activity by mutations in the TPK genes strongly reduces trehalase activation. Inactivation of phosphate transport by deletion of PHO84 abolishes phosphate signalling at standard concentrations, arguing against the existence of a transport-independent receptor. The non-metabolizable phosphate analogue arsenate also triggered signalling. Constitutive expression of the Pho84, Pho87, Pho89, Pho90 and Pho91 phosphate carriers indicated pronounced differences in their transport and signalling capacities in phosphate-starved cells. Pho90 and Pho91 sustained highest phosphate transport but did not sustain trehalase activation. Pho84 sustained both transport and rapid signalling, whereas Pho87 was poor in transport but positive for signalling. Pho89 displayed very low phosphate transport and was negative for signalling. Although the results confirmed that rapid signalling is independent of growth recovery, long-term mobilization of trehalose was much better correlated with growth recovery than with trehalase activation. These results demonstrate that phosphate acts as a nutrient signal for activation of the protein kinase A pathway in yeast in a glucose-dependent way and they indicate that the Pho84 and Pho87 carriers act as specific phosphate sensors for rapid phosphate signalling.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk