Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Arch Biochem Biophys. 2003 Feb 15;410(2):317-23.

Structural changes and facilitated association of tropoelastin.

Author information

  • 1School of Molecular and Microbial Biosciences G08, University of Sydney, Sydney, New South Wales 2006, Australia.

Abstract

Circular dichroism studies of tropoelastin secondary structure show 4+/-1% alpha-helix in aqueous solutions. This is in contrast to the substantially higher amounts (up to 23+/-7%) of alpha-helix predicted by computer algorithms, which propose that regions of alpha-helix are limited to the alanine-rich cross-linking domains. Through the addition of trifluoroethanol, the amount of alpha-helix increased to 17+/-1%, equivalent to that expected on the basis of primary structure. The physiological ability of the protein to coacervate and the critical concentration of monomer required for coacervation were unaffected by levels of alpha-helix. However, the temperature required for coacervation decreased linearly with increasing alpha-helical structure, which correlates with the participation of alpha-helices in association. We propose that the alanine-rich cross-linking domains exist as nascent helices in tropoelastin in aqueous solution. We further suggest a novel mechanism for coacervation whereby formation of alpha-helices and subsequent helical side chain interactions limit the conformational flexibility of the polypeptide, to facilitate associations between hydrophobic domains during elastogenesis.

PMID:
12573292
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk